An estimation method for point sources of multidimensional diffusion equation
نویسندگان
چکیده
منابع مشابه
Solutions of diffusion equation for point defects
An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...
متن کاملsolutions of diffusion equation for point defects
an analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the robin-type boundary conditions. the distributions of point defects for different migration lengths of defects have been calculated. the exact analytical solution was used to verify the approximate numerical solutio...
متن کاملA Practical Method for Estimation of Point Light-Sources
We introduce a general model for point light-sources and show how the parameters of a source at finite distance can be estimated by shading on an object with known geometry and Lambertian reflectance. The parameters we estimate include not only the direction but also the location of the source. Furthermore, we argue that the system introduced here can be used in arbitrarily complex background i...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 1997
ISSN: 0307-904X
DOI: 10.1016/s0307-904x(96)00148-5